

1000BASE-BX SFP 1310nmTX/1550nmRX 20km DOM Transceiver

SFP-GE-20-SM1310-D-LL

Application

- Switch to Switch Interface
- Fast Ethernet
- Switched Backplane Applications
- Router/Server Interface
- Other Optical Links

Features

- Operating data rate Up to 1.25Gb/s
- Two types:
 - A:1310nm FP transmitter /1550nm receiver
 - B:1550nm DFB transmitter/1310nm receiver
- Up to 20km on 9/125μm SMF

- · Hot-pluggable SFP footprint
- BIDI LC/UPC type pluggable optical interface
- Low power dissipation
- · Metal enclosure, for lower EMI
- RoHS compliant and lead-free
- Support Digital Diagnostic Monitor interface
- Single +3.3V power supply

- Case operating temperature:
 - Commercial: 0° C ~ 70° C
 - Extended: -20° C $\sim 85^{\circ}$ C
 - Industrial: -40° C ~ 85° C
- Compliant with SFP MSA Specification
- Compliant with SFF-8472
- Compliant with IEEE 802.3z

Description

Longline SFP-GE-20-SM 1310-D-LLSFP transceiver is compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA). The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the 1310 nm FP laser (the 1550nm DFB laser) and the PIN/TIA. The module data link up to 20km in 9/125um Single-mode fiber.

This transceiver meets the Small Form Pluggable (SFP) industry standard package utilizing an integral LC-Bi-dirictional optical interface connector. An enhanced Digital Diagnostic Monitoring Interface compliant with SFF-8472 has been incorporated into the transceiver. It allows real time access to the transceiver operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage by reading a built-in memory with I²C interface.

The optical output can be disabled by a LVTTL logic high-level input of TX Disable, and the system also can disable the module via I²C. TX Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I²C register access.

Product Specifications

I.General Specifications

Parameter	Symbol	Min	Тур.	Max	Unit
Bit Rate	BR			1.25	Gb/s ec
Max.Supported Link Length	Lmax			20	km

II. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Storage Temperature	T_S	-40		85	°C	
Storage Ambient Humidity	H _A	5		95	%	
Power Supply Voltage	V_{CC}	-0.5		4	V	
Signal Input Voltage		-0.3		V _{cc} +0.3	V	
Receiver Damage Threshold		+3			dBm	
Lead Soldering Temperature/Time	T_{sold}			260/10	°C/sec	Note 1
Lead Soldering Temperature/Time	T_{sold}			360/10	°C/sec	Note 2

Notes:

- 1. Suitable for wave soldering.
- 2. Only for soldering by iron.

III. Electrical Characteristics

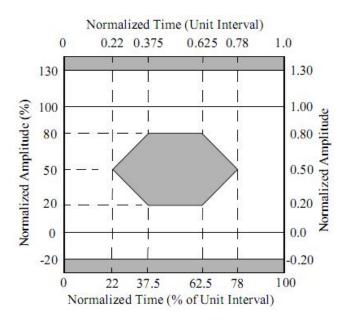
Parameter	Symbol	Min	Тур.	Max	Unit	Ref.	
		0		70		SFP-GE-20-SM \$\$\$\dagger{9}\$\dagge	
Case Operating Temperature	T_{case}	-20		85	°C	SFP-GE-20-SM \$\$\$\delta^ED-LLF35(
		-40		85		SFP-GE-20-SM (PSA)-D-LLF35	
Ambient Humidity	H _A	5		70	%	Non-condensing	
Power Supply Voltage	V_{CC}	3.13	3.3	3.47	V		
Power Supply Current	I _{cc}			280	mA		
Data Rate			1250/1250		Mbps	TX Rate/RX Rate	
Transmission Distance				20	km		
Coupled Fiber		Sii	ngle mode fibe	er		9/125μm G.652	
		7	ransmitter				
Total Supply Current	I _{cc}			А	mA		
Transmitter Disable Input-High	V_{DISH}	2		V _{CC} +0.3	V	Note 1	
Transmitter Disable Input-Low	V_{DISL}	0		0.8	V	LVTTL	
Transmitter Fault Input-High	V_{TxFH}	2		V _{CC} +0.3	V	LVTTL	
Transmitter Fault Input-Low	V_{TxFL}	0		0.8	V	LVTTL	
Receiver							
Total Supply Current	I _{cc}			В	mA	Note 1	
LOS Output Voltage- High	V_{LOSH}	2		V _{CC} +0.3	V	LVTTL	
LOS Output Voltage- Low	V_{LOSL}	0		0.8	V	LVTTL	

Note:

1. A (TX) + B (RX) = 280 mA (Not include termination circuit)

IV. Optical Characteristics

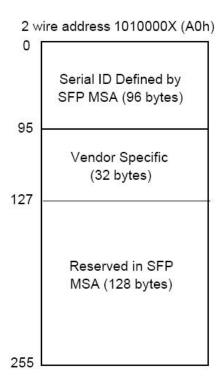
Parameter	Symbol	Min	Тур.	Max	Unit	Ref.		
Transmitter (Tx)								
Average Output Power	P _{OUT}	-9		-3	dBm	SFP-GE-20-SM ₹§¶\$-Ð-LLF		
Extinction Ratio	ER	9			dB			
Center Wavelength	λς	1260	1310	1360	nm	SFP-GE-BX- LLF35		
		1530	1550	1570		SFP-GE-BX- LLB53		
Spectrum Width (RMS)	σ			3.5	nm	FP Laser(TX:1310nm)		
Side Mode Suppression Ratio	SMSR	30			dB	DFB Laser(TX:1550nm)		
Spectrum Bandwidth(-20dB)	σ			1	nm			
Transmitter OFF Output Power	P _{OFF}			-45	dBm			
Jitter p-p	t _J			0.1	UI	Note 1		
Output Eye Mask	Compliant	t with IEEE8 safet		ss 1 laser		Note 2		



Receiver	(Rx
----------	-----

Input Optical Wavelength	λ_{IN}	1550 1290	1550 1310	1600 1330	nm	SFP-GE-BX- LLF35 SFP-GE-BX- LLB53
Receiver Sensitivity	P_{IN}			-23	dBm	Note 3
InputSaturation Power (Overload)	P_{SAT}	-3			dBm	
Loss of Signal Assert	P_A	-45			dBm	
Loss of Signal De- assert	P_{D}			-23.5	dBm	Note 4
LOS Hysteresis	P_D-P_A	0.5		6	dB	

Notes:


- 1. Measure at 2^7-1 NRZ PRBS pattern.
- 2. Transmitter eye mask definition.

- 3. Measured with Light source 1490nm(1310nm), ER=9dB; BER = $<10^-12$ @PRBS= 2^7-1 NRZ.
- 4. When LOS De-asserted, the RX data+/- output is signal output.

V. Digital Diagnostic Memory Map

VI. Digital Diagnostic Monitoring Information

Parameter	Unit	Accuracy
Case Temperature	°C	±3
Supply Voltage	V	± 3%
TX Bias Current	mA	±10%
TX Optical Power	dB	±3
RX Optical Power	dB	±3

VII. Pin Description

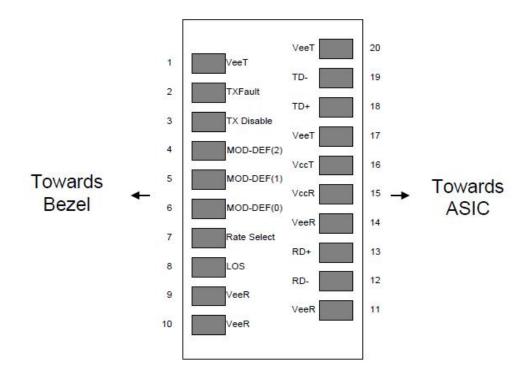
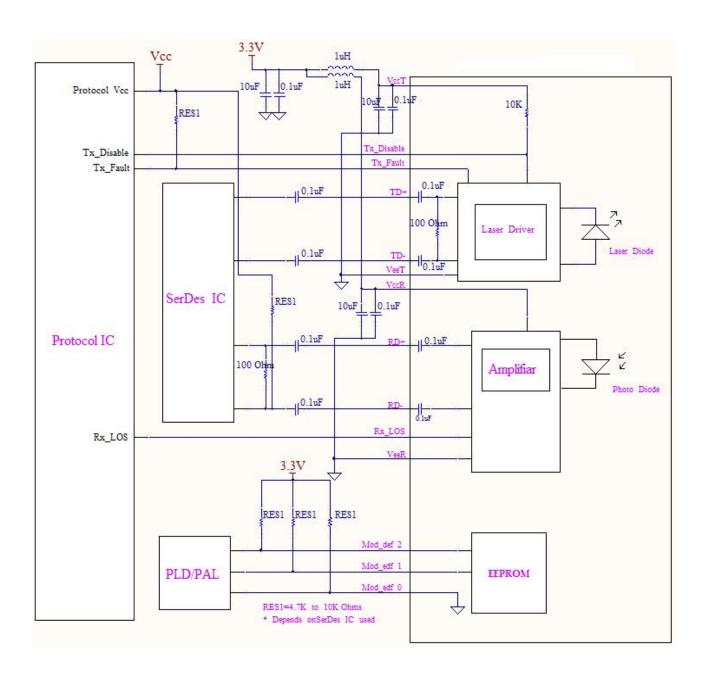


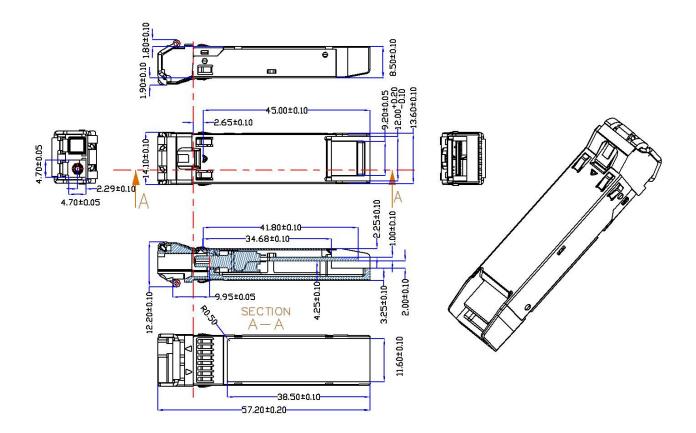
Figure 1. Pin out of Connector Block on Host Board

Pin	Symbol	Name/Description	Ref.
1	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault.Open Drain. Logic "0" indicates normal operation.	2
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	4
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	4
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	4
7	Rate Select	No connection required.	
8	LOS	Loss of Signal indication. Open Drain. Logic "0" indicates normal operation.	5
9	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1


10	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out(CML). AC Coupled	
13	RD+	Receiver Non-inverted DATA out(CML). AC Coupled	
14	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V_{CCR}	Receiver Power Supply	
16	V_{CCT}	Transmitter Power Supply	
17	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. TX Fault is an open drain output, which should be pulled up with $4.7K 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V to VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V. When sensing an improper power level in the laser driver, the SFP sets this signal high and turns off the laser. TX-FAULT can be reset with the TX-DISABLE line. The signal is in LVTTL level.
- 3.TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with $4.7K 10K\Omega$ resistor. Its states are: Low (0 0.8V): Transmitter on; (>0.8, < 2.0V): Undefined; High (2.0V to VccT/R+0.3V): Transmitter Disabled; Open: Transmitter Disabled. The TX-DISABLE signal is high (LVTTL logic "1") to turn off the laser output. The laser will turn on when TX-DISABLE is low (LVTTL logic "0").
- 4. Should be pulled up with 4.7K $10K\Omega$ on host board to a voltage between 2.0V to VccT/R+0.3V. MOD_DEF (0) pulls line low to indicate module is plugged in.
- 5.LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with $4.7K 10K\Omega$ resistor. Pull up voltage between 2.0V to VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V. The RX-LOS is high (LVTTL logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in LVTTL level.



VIII. Recommend Circuit Schematic

IX. Mechanical Specifications

