10GBASE-ER SFP+ 1550nm 40km Industrial DOM Duplex LC Transceiver OSX040N01-I-LL ### **Application** - 10GBASE-LR at 10.31Gbps - 10GBASE-LW at 9.95Gbps #### **Standards** - SFF-8431 - SFF-8432 - SFF-8472 - 10GFC Rev 4.0 - 10GBASE-ER #### **Features** - High Sensitivity Receiver - 1550nm EML Transmitter - Power Dissipation<1.8W - Hot-pluggable Duplex LC Connector Interface - Single 3.3V Power Supply and TTL Logic Interface - 2-Wire Interface with Integrated Digital Diagnostic Monitoring - Industrial Temperature Range: -40~ 85°C ## Description The 10G ER SFP+ Optical Transceiver Module supports up to 40km link lengths over SMF. The transceiver is compliant with SFF-8431,SFF-8432, 10GFC Rev 4.0, and 10GBASE-ER. Digital diagnostics functions are available via a 2-wire serial interface, as specified in the SFF-8472. The SFP-10GER-55-I is for industrial operating temperature range and can work in harsh industrial environments, such as telecommunication, data processing and management, the application of industrial and factory automation, outdoor applications, rail and intelligent transportation systems (ITSs), marine, oil and gas, mining etc. ## **Product Specifications** ## I. Absolute Maximum Ratings | Parameter | Symbol | Min. | Max. | Unit | |-----------------------------|-----------------|------|------|------| | Storage Temperature | T _S | -40 | 85 | °C | | Operating Relative Humidity | RH | | 95 | % | | Maximum Supply Voltage | V _{cc} | -0.5 | 3.6 | V | #### Note ## **II. Optical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | | |------------------------------|------------------|------|---------------|------|------|--| | Power Budget | | 14 | | | dB | | | Data Rate | | 0.6 | 9.953/10.3125 | | Gbps | | | Transmitter | | | | | | | | Center Wavelength | λ_{C} | 1528 | 1550 | 1565 | nm | | | Spectral Width (-20dB) | Δλ | | | 1 | nm | | | Average Output Power*(Note1) | P _{out} | -2 | | 4 | dBm | | ^{1.} Exceeding any one of these values may destroy the device immediately. | Parameter | Symbol | Min. | Тур. | Max. | Unit | |-------------------------------------|-------------------|----------|------|------|-------| | Extinction Ratio | ER | 7.5 | | | dB | | Average Power of OFF
Transmitter | P_{off} | | | -30 | dBm | | Relative Intensity Noise | RIN | | | -128 | dB/Hz | | Side Mode Suppression
Ratio | SMSR | 30 | | | dB | | Transmitter Dispersion
Penalty | TDP | | | 3 | dB | | TX_Disable Assert Time | T_off | | | 10 | us | | | | Receiver | | | | | Center Wavelength | λ_{C} | 1260 | 1550 | 1600 | nm | | Receiver Sensitivity*(Note2) | P _{min.} | | | -16 | dBm | | Receiver Overload | $P_{\text{max.}}$ | 0 | | | dBm | | LOS De-assert | LOS _D | | | -18 | dBm | | LOS Assert | LOS _A | -30 | | | dBm | | LOS-Hysteresis | Phys | 0.5 | | | dB | #### Notes 2. Measured with worst ER, BER less than 1E-12 and PRBS 2^31-1 at 10.3125Gbps. ^{1.} Output is coupled into a 9/125um SMF. # **III. Electrical Characteristics** | Parameter | | Symbol | Min. | Тур. | Max. | Unit | Notes | |---------------------------------|------------|------------------|------|------|----------------------|------|--------------------------------| | Transmitter | | | | | | | | | CML Inputs (Differential) | | V_{in} | 150 | | 1200 | mVpp | AC Coupled Inputs | | Input AC Common Moo | de Voltage | | 0 | | 25 | mV | RMS | | Input Impedance (Dif | ferential) | Z _{in} | 85 | 100 | 115 | ohms | Rin>100kohms @DC | | TX_DIS | High | | 2 | | V _{CC} | V | | | נוע_גו | Low | | 0 | | 0.8 | V | | | TX_FAULT | High | | 2 | | V _{CC} +0.3 | V | lo=400μA; Host V _{CC} | | | Low | | 0 | | 0.5 | V | lo= -4.0mA | | Receiver | | | | | | | | | CML Outputs (Diffe | rential) | V_{out} | 350 | | 700 | mVpp | AC Coupled Outputs | | Output Impedance (Differential) | | Z_{out} | 85 | 100 | 115 | ohms | | | RX_LOS | High | | 2 | | V _{CC} +0.3 | | lo=400μA; Host V _{CC} | | NA_LOJ | Low | | 0 | | 0.8 | | lo= -4.0mA | | MOD_DEF (0 | 2) | VoH | 2.5 | | | V | With Serial ID | | MOD_DEF (0. | 4) | VoL | 0 | | 0.5 | V | | ## **IV. Pin Definitions** | | Seq. | Notes | |------------------------------------|--------------------|---| | 1 V _{EE} T Transm | itter Ground 1 | 5) | | 2 TX Fault Transmitter | Fault Indication 3 | 1) | | 3 TX Disable Transm | itter Disable 3 | 2) Module Disables on High or Open | | 4 SDA Transm | itter Disable 3 | 3) 2 Wire Serial ID Interface. | | 5 SCL Module | Definition 2 3 | 3) 2 Wire Serial ID Interface. | | 6 MOD-ABS Module | Definition 1 3 | 3) | | 7 RSO RX Rate | Select (LVTTL) 3 | Rate Select 0, optionally controls SFP+ module receiver. This pin is pulled low to $V_{\rm EE}T$ with a>30K resistor. | | 8 LOS Loss | of Signal 3 | 4) | | 9 RS1 TX Rate 9 | Select (LVTTL). 1 | Rate Select1, optionally controls SFP+ Module transmitter. This pin is pulled low to $V_{\rm EE}T$ with a>30K resistor. | | 10 V _{EE} R Receiv | ver Ground 1 | 5) | | 11 V _{EE} R Recei | ver Ground 1 | 5) | | 12 RD- Inv. Rece | ived Data Out 3 | 6) | | Pin | Name | Function | Plug
Seq. | Notes | |-----|-------------------|-----------------------|--------------|--------------| | 13 | RD+ | Received Data Out | 3 | 6) | | 14 | $V_{\text{EE}}R$ | Receiver Ground | 1 | 5) | | 15 | $V_{CC}R$ | Receiver Power | 2 | 7) 3.3V ± 5% | | 16 | $V_{CC}T$ | Transmitter Power | 2 | 7) 3.3V ± 5% | | 17 | $V_{\text{EE}}T$ | Transmitter Ground | 1 | 5) | | 18 | TD+ | Transmit Data In | 3 | 8) | | 19 | TD- | Inv. Transmit Data In | 3 | 8) | | 20 | V _{EE} T | Transmitter Ground | 1 | 5) | #### Notes - 1). TX Fault is an open collector/drain output, which should be pulled up with a 4.7K-10K resistor on the host board. Pull up voltage between 2.0V and $V_{CC}T$, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V. - 2). TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7-10 K resistor. It states are Low(0-0.8V): Transmitter on.(>0.8, < 2.0V): Undefined High (2.0 3.465V): Transmitter Disabled Open: Transmitter Disabled. - 3). Modulation Absent, connected to VEET or VEER in the module. - 4). LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K 10K resistor. Pull up voltage between 2.0V and VCCT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver Sensitivity (as defined by the Standard in use). Low indicates normal operation. - 5). VEER and VEET may be internally connected within the SFP module. - 6). RD-/+: These are the differential receiver outputs. They are AC coupled 100 differential Lines which should be terminated with 100 (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 400 and 2000 mV differential (200 1000 mV single ended) when properly terminated. - 7). VCCR and VCCT are the receiver and transmitter power supplies. They are defined as $3.3V \pm 5\%$ at the SFP connector pin. Maximum supply current is 300mA. Reco-mmended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in 0 rder to maintain the required voltage at the SFP input pin with 3.3V supply voltage When the re commended supply-filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VCCR and VCCT may be internally connected within the SFP transceiver module. - 8). TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100 differential termination inside the module. # **V. Digital Diagnostic Specifications** | DDM | HAlarm | HWarm | LAlarm | LWarm | |-------------------------------------|--------|-------|--------|-------| | Temperature (°C) | 95 | 85 | -50 | -40 | | V _{cc} (V) | 3.6 | 3.5 | 3.0 | 3.1 | | Ibias (mA) | 120 | 100 | 20 | 30 | | Tx Power (dBm) | 6 | 4 | -4 | -2 | | Rx Power (dBm) | 2 | 0 | -18 | -16 | #### Note The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA). The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring. # **VI. Mechanical Specifications** #### Unit: mm