

10GBASE-LRM SFP+ 1310 nm 220m DOM Transceiver

AA1403017-E6-LL

Application

- 10GBASE-LRM 10G Ethernet
- · Legacy FDDI multimode links

Features

- Hot-pluggable SFP+ footprint
- Supports 10.3 Gb/s bit rates
- Power dissipation < 1W
- RoHS-6 compliant (lead-free)
- Commercial temperature range 0° C to 70° C Fabry-Perot (FP) laser at 1310nm
- Single 3.3Vpower supply
- · Maximum link length of 220m
- Uncooled directly modulated

- · Receiver linear electrical interface
- Duplex LC connector
- · Built-in digital diagnostic functions

Description

10Gb/s Enhanced Small Form Factor Pluggable SFP+ transceivers are designed for use in 10-Gigabit Ethernet links up to 220m over Multi Mode fiber. They are compliant with SFF-8431, SFF-8432 and IEEE 802.3 aq 10GBASE-LRM. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

The transceiver is a "linear module" i.e. it employs a linear receiver. Host board designers using an EDC PHY IC should follow the IC manufacturer's recommended settings for interoperating the host board EDC PHY with a linear receiver SFP+ module. The optical transceivers are compliant per the RoHS Directive 2011/65/EU. See Finisar Application Note AN-2038 for more details.

Product Specifications

I.General Specifications

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Bit Rate	BR		10.3125		Gb/s	1
Bit Error Ratio	BER			10 ⁻¹²		2

		Maximum Sup	ported Di	stances			
Fiber Type	1310nm OFL Bandwidth						
	"FDDI" 160MHz-km				220		
62.5μm	OM1 200MHz-km	Lmax			220	m	3
	400 MHz-km				100		
50μm	OM2 500 MHz-km	Lmax			220		3
30μ ΙΙΙ	OM3 2000 MHz-km	Lillax			220	m	

Notes:

- 1.10GBASE-LRM
- 2. Tested with a 2 31 1 PRBS
- 3. Operating range as defined by IEEE standards. Longer reach possible depending upon link implementation.

II. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	T _S	-40		85	° C	
Relative Humidity	RH	0		85	%	1

Notes:

III. Electrical Characteristics (TOP= 0 to 70 $^{\circ}$ C, VCC = 3.14 to 3.46 Volts)

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Supply Voltage	Vcc	3.14		3.46	V	
Supply Current	lcc		200	300	mA	
Power Dissipation	Р			1.0	W	
	Ti	ansmitter				
Input differential impedance	R_{in}		100		Ω	1
Differential data input swing	Vin,pp	90		350	mV	2
Transmit Disable Voltage	V_D	2		Vcc	V	3
Transmit Enable Voltage	V_{EN}	Vee		Vee+ 0.8	V	
	1	Receiver				
Termination Mismatch at 1 MHz	ΔZ_{M}			5	%	
Single Ended Output Voltage Tolerance		-0.3		4.0	V	
Output AC Common Mode Voltage				7.5	mV RMS	
Output Rise and Fall time (20% to 80%)	T_r,T_f	30			Ps	4

^{1.} Non-condensing.

Receiver

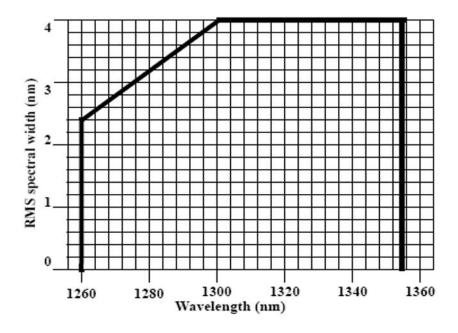
Relative Noise LRM Links with crosstalk	RN		per SFF-8431			5
Difference Waveform Distortion Penalty	dWDP	I	per SFF-8431		dBo	5,6
Differential Voltage Modulation Amplitude	VMA	180		600	mV	
LOS Fault	$V_{LOSfault}$	2		Vcc _{HOST}	V	7
LOS Normal	$V_{LOSnorm}$	Vee		Vee+0.8	V	7
Power Supply Noise Tolerance	VccT/VccR		per SFF-8431		mVpp	8

Notes:

- 1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.
- 2.Per SFF-8431 Rev 4.1
- 3. Into 100 ohms differential termination.
- 4. Measured with Module Compliance Test Board and OMA test pattern.
- $5. Values \ shown \ in \ Table \ 20, SFF-8431. \ dWDP \ and \ RN \ is \ calculated \ by \ the \ following \ equation:$
 - $RN \le min[(m1 \times dWDP + b1), (m2 \times dWDP + b2), RNmax]$
- 6. Defined with reference receiver with 14 T/2 spaced FFE taps and 5 T spaced DFE taps.
- 7.LOS is an open collector output. Should be pulled up with $4.7k 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1. Maximum pull-up voltage is 5.5V.
- 8. As described in Section 2.8.1, SFF-8431 Rev 4.1.

IV. Optical Characteristics (TOP = 0 to 70 $^{\circ}$ C, VCC = 3.14 to 3.46 V)

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.			
Transmitter (Tx)									
Optical Modulation Amplitude (OMA)	P_{OMA}	-4.5		+1.5	dBm				
Average Launch Power	P_{AVE}	-6.5		0.5	dBm	1			
Peak Launch Power	P _{MAX}			3	dBm				
Optical Wavelength	λ	1260		1355	nm				
	λ _{rms} @1260nm			2.4					
RMS Spectral Width	λ _{rms} @ 1260nm- 1300nm			See Figure as below	nm	2			
	λ _{rms} @ 1300nm- 1355nm			4					
Optical Extinction Ratio	ER	3.5			dB				
Optical Eye Mask Margin		0			%	3			
Transmitter Waveform Dispersion Penalty	TWDP			4.7	dB	4			



Average Launch power of OFF transmitter	P _{OFF}		-30	dBm	
Uncorrelated Jitter [rms]	Tx _j		0.033	UI	
Relative Intensity Noise	RIN ₁₂ OMA		-128	dB/Hz	
Encircled Flux	<5μm <11μm	30 81		%	
Transmitter Reflectance			-12	dB	
Optical Return Loss Tolerance		20		dB	
	Recei	ver (Rx)			
Receiver Overload	POMA	+1.5		dBm	5
	Precursor		-6.5		
Comprehensive Stressed Receiver Sensitivity (OMA) @ 10.3125Gb/s	Symmetrical			10	
2011210111, (211111, (21111212121)	3yrminetrical		-6.0	dBm	6
, (e, e)	Postcursor		-6.5	dBm	6
Wavelength Range	·	1260		N _m	6
	Postcursor	1260	-6.5		6
Wavelength Range	Postcursor λ_{C}	1260	-6.5 1355	N _m	6
Wavelength Range Receiver Reflectance	Postcursor λ_{C} R_{rx}	1260	-6.5 1355 -12	N _m	6

Notes:

- $1. Average\ power\ figures\ are\ informative\ only, per\ IEEE802.3 aq$
- 2. Maximum RMS spectral width as specified by Figure as below
- 3. Optical Eye Mask requires the host board to be SFF-8431 compliant. Optical eye mask per IEEE802.3aq.
- 4.TWDP figure requires the host board to be SFF-8431compliant. TWDP is calculated
- 5. using the Matlab code provided in clause 68.6.6.2 of IEEE802.3aq Receiver overload specified in OMA and under the worst comprehensive stressed condition.
- 6. Conditions of stressed receiver tests per IEEE802.3aq. CSRS testing requires the host board to be SFF-8431 compliant.

Transmitter Maximum RMS Spectral Width

V.Digital Diagnostic Specifications

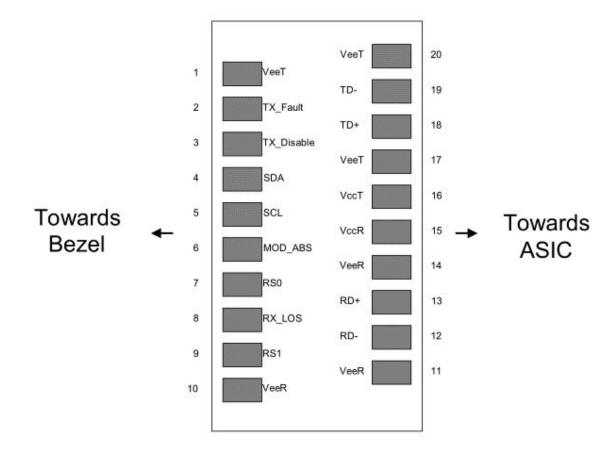
The transceiver can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Min	Тур.	Max	Units	Ref.
	A	ccuracy				
Internally measured transceiver temperature	DD_Temp			3	°C	
Internally measured transceiver supply voltage	$DD_{Voltage}$			100	mV	
Measured TX bias current	DD_Bias			10	%	1
Measured TX output power	DD _{Tx-Power}			2	dB	
Measured RX received average optical power	DD _{Rx-Power}			2	dB	

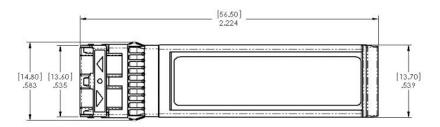
Parameter	Symbol	Min	Тур.	Max	Units	Ref.			
Dynamic Range for Rated Accuracy									
Internally measured transceiver temperature	DD_Temp	-5		75	°C				
Internally measured transceiver supply voltage	$DD_{Voltage}$	3.1		3.5	V				
Measured TX bias current	DD_Bias	0		75	mA				
Measured TX output power	$DD_Tx\text{-Power}$	-6.5		0.5	dBm				
Measured RX received average optical power	DD _{Rx-Power}	-20		-10	dBm				
	Max Re	porting Ran	ge						
Internally measured transceiver temperature	DD_Temp	-40		125	°C				
Internally measured transceiver supply voltage	$DD_{Voltage}$	2.8		4.0	V				
Measured TX bias current	DD_Bias	0		75	mA				
Measured TX output power	$DD_Tx ext{-Power}$	-10		3	dBm				
Measured RX received average optical power	$DD_Rx\text{-Powe}$	-22		0	dBm				

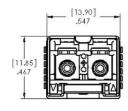
Note:

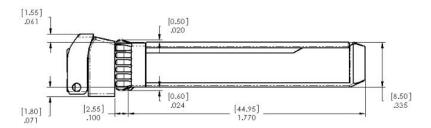
1. Accuracy of Measured Tx Bias Current is 10% of the actual Bias Current from the laser driver to the laser.


VI. Pin Description

Pin	Symbol	Name/Description	Ref.
1	V_{EET}	Transmitter Ground	1
2	T_{FAULT}	Transmitter Fault	
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	2
4	SDA	2-wire Serial Interface Data Line	3
5	SCL	2-wire Serial Interface Clock Line	3
6	MOD_ABS	Module Absent. Grounded within the module	3
7	RS0	No connection required	
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation.	4
9	RS1	No connection required	
10	V_{EER}	Receiver Ground	1
11	V_{EER}	Receiver Ground	1
12	RD-	Receiver Inverted DATA out. AC Coupled.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled.	
14	V_{EER}	Receiver Ground	1
15	V_{CCR}	Receiver Power Supply	
16	V_{CCT}	Transmitter Power Supply	
17	V_{EET}	Transmitter Ground	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V_{EET}	Transmitter Ground(Common with Receiver Ground)	1


Notes:


- 1. Circuit ground is internally isolated from chassis ground.
- 2. Laser output disabled on T DIS > 2.0V or open, enabled on T DIS < 0.8V.
- 3. Should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.
- $4.RX_LOS$ is open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.



VII. Mechanical Specifications

